Gastrulation EMT Is Independent of P-Cadherin Downregulation
نویسندگان
چکیده
Epithelial-mesenchymal transition (EMT) is an evolutionarily conserved process during which cells lose epithelial characteristics and gain a migratory phenotype. Although downregulation of epithelial cadherins by Snail and other transcriptional repressors is generally considered a prerequisite for EMT, recent studies have challenged this view. Here we investigate the relationship between E-cadherin and P-cadherin expression and localization, Snail function and EMT during gastrulation in chicken embryos. Expression analyses show that while E-cadherin transcripts are detected in the epiblast but not in the primitive streak or mesoderm, P-cadherin mRNA and protein are present in the epiblast, primitive and mesoderm. Antibodies that specifically recognize E-cadherin are not presently available. During EMT, P-cadherin relocalizes from the lateral surfaces of epithelial epiblast cells to a circumferential distribution in emerging mesodermal cells. Cells electroporated with an E-cadherin expression construct undergo EMT and migrate into the mesoderm. An examination of Snail function showed that reduction of Slug (SNAI2) protein levels using a morpholino fails to inhibit EMT, and expression of human or chicken Snail in epiblast cells fails to induce EMT. In contrast, cells expressing the Rho inhibitor peptide C3 rapidly exit the epiblast without activating Slug or the mesoderm marker N-cadherin. Together, these experiments show that epiblast cells undergo EMT while retaining P-cadherin, and raise questions about the mechanisms of EMT regulation during avian gastrulation.
منابع مشابه
p38 and a p38-Interacting Protein Are Critical for Downregulation of E-Cadherin during Mouse Gastrulation
During vertebrate gastrulation, an epithelial to mesenchymal transition (EMT) is necessary for migration of mesoderm from the primitive streak. We demonstrate that p38 MAP kinase and a p38-interacting protein (p38IP) are critically required for downregulation of E-cadherin during gastrulation. In an ENU-mutagenesis screen we identified the droopy eye (drey) mutation, which affects splicing of p...
متن کاملHyperuricemia Induces Wnt5a/Ror2 Gene Expression, Epithelial–Mesenchymal Transition, and Kidney Tubular Injury in Mice
Background: Hyperuricemia contributes to kidney injury, characterized by tubular injury with epithelial–mesenchymal transition (EMT). Wnt5a/Ror2 signaling drives EMT in many kidney pathologies. This study sought to evaluate the involvement of Wnt5a/Ror2 in hyperuricemia-induced EMT in kidney tubular injury.Methods: A hyperuricemia model was performed in male Swiss background mice (3 months old,...
متن کاملInappropriate cadherin switching in the mouse epiblast compromises proper signaling between the epiblast and the extraembryonic ectoderm during gastrulation
Cadherin switching from E-cadherin (E-cad) to N-cadherin (N-cad) is a key step of the epithelial-mesenchymal transition (EMT) processes that occurs during gastrulation and cancer progression. We investigate whether cadherins actively participate in progression of EMT by crosstalk to signaling pathways. We apply ectopic cadherin switching before the onset of mouse gastrulation. Mutants with an i...
متن کاملEPB41L5 functions to post-transcriptionally regulate cadherin and integrin during epithelial–mesenchymal transition
EPB41L5 belongs to the band 4.1 superfamily. We investigate here the involvement of EPB41L5 in epithelial-mesenchymal transition (EMT) during mouse gastrulation. EPB41L5 expression is induced during TGFbeta-stimulated EMT, whereas silencing of EPB41L5 by siRNA inhibits this transition. In EPB41L5 mutants, cell-cell adhesion is enhanced, and EMT is greatly impaired during gastrulation. Moreover,...
متن کاملSnail2 and Zeb2 repress P-cadherin to define embryonic territories in the chick embryo.
Snail and Zeb transcription factors induce epithelial-to-mesenchymal transition (EMT) in embryonic and adult tissues by direct repression of E-cadherin transcription. The repression of E-cadherin transcription by the EMT inducers Snail1 and Zeb2 plays a fundamental role in defining embryonic territories in the mouse, as E-cadherin needs to be downregulated in the primitive streak and in the epi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016